Benzimidazole-heterocyclic hybrids as potential anticancer agents: A review on outstanding research

Các tác giả

  • Pham Canh Em Hong Bang International University

Từ khóa:

benzimidazol, triazin, purin, pyrazol, thiazol, tạp chủng kháng ung thư

Tóm tắt

Cancer is one of the most serious medical problem and second leading cause of death in the world, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth. Benzimidazole-heterocyclic hybridization, involving a combination of benzimidazole nucleus and other pharmacophores of bioactive heterocyclic scaffolds to generate a single molecular architecture with improved affinity and activity, in comparison to their parent molecules, has emerged as a promising strategy in recent drug discovery research. Hybrid anticancer drugs are of great therapeutic interests since they can potentially overcome most of the pharmacokinetic drawbacks encountered with conventional anticancer drugs. Strategically, the design of anticancer drugs involved the blending or linking of an anticancer drug with another anticancer drug or a carrier molecule which can efficiently target cancer cells with improved biological potential. Major advantages of hybrid anticancer drugs involved increased specificity, better patient compliance, and lower side effects along with reduction in chemo-resistance. This review is intended to provide an overview of discovery and development in benzimidazole-heterocyclic anticancer hybrids, as well as inspire the design and synthesis of new anticancer molecules.

Abstract

Cancer is one of the most serious medical problem and second leading cause of death in the world, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth. Benzimidazole-heterocyclic hybridization, involving a combination of benzimidazole nucleus and other pharmacophores of bioactive heterocyclic scaffolds to generate a single molecular architecture with improved affinity and activity, in comparison to their parent molecules, has emerged as a promising strategy in recent drug discovery research. Hybrid anticancer drugs are of great therapeutic interests since they can potentially overcome most of the pharmacokinetic drawbacks encountered with conventional anticancer drugs. Strategically, the design of anticancer drugs involved the blending or linking of an anticancer drug with another anticancer drug or a carrier molecule which can efficiently target cancer cells with improved biological potential. Major advantages of hybrid anticancer drugs involved increased specificity, better patient compliance, and lower side effects along with reduction in chemo-resistance. This review is intended to provide an overview of discovery and development in benzimidazole-heterocyclic anticancer hybrids, as well as inspire the design and synthesis of new anticancer molecules.

Tài liệu tham khảo

[1] C. P. Wild, E. Weiderpass and B. W. Stewart, “World Cancer Report: Cancer Research for Cancer Prevention,” International Agency for Research on Cancer: Lyon - France, 2021, Available online: http://publications.iarc.fr/586.

[2] M. Tsimberidou, “Targeted therapy in cancer,” Cancer Chemother. Pharmacol., vol 76, pp. 1113-1132, 2015.

[3] N. A. Seebacher, A. E. Stacy, G. M. Porter and A. M. Merlot, “Clinical development of targeted and immune based anti-cancer therapies,” J. Exp. Clin. Cancer Res., vol. 38, p. 156, 2019.

[4] A. Rana, J. Alex, M. Chauhan, G. Joshi and R. Kumar, “A review on pharmacophoric designs of antiproliferative agents,” Med. Chem. Res., vol. 24, pp. 903-920, 2015.

[5] R. Sivakumar, R. Pradeepchandran, K. N. Jayaveera, P. Kumarnallasivan, P. R. Vijaianand and R. Venkatnarayanan, “Benzimidazole: an attractive pharmacophore in medicinal chemistry,” Int. J. Pharm. Res., vol. 3, pp. 19-31, 2011.

[6] R. Abonia, E. Cortes, B. Insuasty, J. Quiroga, M. Nogueras and J. Cobo, “Synthesis of novel 1,2,5-trisubstituted benzimidazoles as potential antitumor agents,” Eur. J. Med. Chem., vol. 46, pp. 4062-4070, 2011.

[7] N. E. Ziolkowska, C. J. Michejda and G. D. Bujacz, “Crystal structures of HIV-1 non-nucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles,” J. Mol. Struct., vol. 930, pp. 157-161, 2009.

[8] S. Tahlan, B. Narasimhan, S. M. Lim, K. Ramasamy, V. Mani and S. AA. Shah, “2-Mercaptobenzimidazole Schiff bases: design, synthesis, antimicrobial studies and anticancer activity on HCT-116 cell line,” Mini Rev. Med. Chem., vol. 19, pp. 1080-1092, 2019.

[9] S. Tahlan, B. Narasimhan, S. M. Lim, K. Ramasamy, V. Mani and S. AA. Shah, “Design, synthesis, SAR study, antimicrobial and anticancer evaluation of novel 2-mer-captobenzimidazole azomethine deri-vatives,” Mini Rev. Med. Chem., vol. 20, pp. 1559-1571, 2020.

[10] K. Lavrador-Erb, S. B. Ravula, J. Yu, S. Zamani-Kord, W. J. Moree, R. E. Petroski, J. Wen, S. Malany, S. R. Hoare, A. Madan, P. D. Crowe and G. Beaton, “The discovery and structure-activity relationships of 2-(piperidin-3-yl)-1H-benzimidazoles as selective, CNS penetrating H1-antihistamines for insomnia,” Bioorg. Med. Chem. Lett., vol. 20, pp. 2916-2919, 2010.

[11] C. Hernandez-Covarrubias, M. A. Vilchis-Reyes, L. Yepez-Mulia, R. Sanchez-Diaz, G. Navarrete-Vazquez, A. Hernandez-Campos, R. Castillo and F. HernandezLuis, “Exploring the interplay of physicochemical properties, membrane permeability and giardicidal activity of some benzimidazole derivatives,” Eur. J. Med. Chem., vol. 52, pp. 193-204, 2012.

[12] C. Kus, G. Ayhan-Kilcigil, S. Ozbey, F. B. Kaynak, M. Kaya, T. Coban and B. Can-Eke, “Synthesis and antioxidant properties of novel N-methyl-1,3,4-thiadiazol-2-amine and 4-methyl-2H-1,2,4-triazole-3(4H)-thione derivatives of benzimidazole class,” Bioorg. Med. Chem., vol. 16, pp. 4294-4303, 2008.

[13] J. Zhang, J. L. Wang, Z. M. Zhou, Z. H. Li, W. Z. Xue, D. Xua, P. Hao Li, X. F. Han, F. Fei, T. Liu and A. H. Liang, “Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT 1 receptor antagonists,” Bioorg. Med. Chem., vol. 20, pp. 4208-4216, 2012.

[14] K. Starcevic, M. Kralj, K. Ester, I. Sabol, M. Grce, K. Pavelic and G. Karminski-Zamola, “Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles,” Bioorg. Med. Chem., vol. 15, pp. 4419-4426, 2007.

[15] H. L. Kuo, J. C. Lien, C. H. Chung, C. H. Chang, S. C. Lo, I. C. Tsai, H. C. Peng, S. C. Kuo and T. F. Huang, “NP-184[2-(5-methyl-2-furyl) benzimidazole], a novel orally active anti-thrombotic agent with dual antiplatelet and anticoagulant activities,” N-S Arch. Pharmocol., vol. 381, pp. 495-505, 2010.

[16] A. Patil, S. Ganguly and S. Surana, “Synthesis and antiulcer activity of 2-[5-substituted-1-H-benzo(d)imidazol-2-ylsulfinyl]methyl-3-substituted quinazoline-4-(3H) ones,” J. Chem. Sci., vol. 122, pp. 443-450, 2010.

[17] M. M. Gottesman, T. Fojo and S. E. Bates, “Multidrug resistance in cancer: role of ATP-dependent transporters,” Nat. Rev. Cancer, vol. 2, pp. 48-58, 2002.

[18] D. M. Molina, R. Jafari, M. Ignatushchenko, T. Seki, E. A. Larsson, C. Dan, L. Sreekumar, Y. Cao and P. Nordlund, “Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay,” Science, vol. 341, pp. 84-87, 2013.

[19] S. W. Fesik, “Promoting apoptosis as a strategy for cancer drug discovery,” Nat. Rev. Cancer, vol. 5, pp. 876-885, 2005.

[20] D. Sloane, “Cancer epidemiology in the United States: racial, social, and economic factors,” Methods Mol. Biol., vol. 471, pp. 65-83, 2009.

[21] G. Kibria, H. Hatakeyama and H. Harashima, “Cancer multidrug resistance mechanisms involved and strategies for circumvention using a drug delivery system,” Arch. Pharm. Res., vol. 37, pp. 4-15, 2014.

[22] B. A. Larder, S. D. Kemp and P. R. Harrigan, “Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy,” Science, vol. 269, pp. 696-699, 1995.

[23] S. A. Eisen, D. K. Miller, R. S. Woodward, E. Spitznagel and T. R. Przybeck, “The effect of prescribed daily dose frequency on patient medication compliance,” Arch. Intern. Med., vol. 150, pp. 1881-1884, 1990.

[24] A. Husain, M. Rashid, M. Shaharyar, A. A. Siddiqui and R. Mishra, “Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents,” Eur. J. Med. Chem., vol. 62, pp. 785-798, 2013.

[25] P. Singla, V. Luxami and K. Paul, “Triazine-benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors,” Bioorg. Med. Chem., vol. 23, pp. 1691-1700, 2015.

[26] P. Singla, V. Luxami and K. Paul, “Synthesis and in vitro evaluation of novel triazine analogues as anticancer hybrids and their interaction studies with bovine serum albumin,” Eur. J. Med. Chem., vol. 117, pp. 59-69, 2015.

[27] T. T. Wu, Q. Q. Guo, Z. L. Chen, L. L. Wang, Y. Du, R. Chen, Y. H. Mao, S. G. Yang, J. Huang, J. T. Wang, L. Wang, L. Tang and J. Q. Zhang, “Design, synthesis and bioevaluation of novel substituted triazines as potential dual PI3K/mTOR inhibitors,” Eur. J. Med. Chem., vol. 204, p. 112637, 2020.

[28] T. S. Reddy, H. Kulhari, V. G. Reddy, V. Bansal, A. Kamal and R. Shukla, “Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing hybrids,” Eur. J. Med. Chem., vol. 101, pp. 790-805, 2015.

[29] M. J. Akhtar, A. A. Khan, Z. Ali, R. P. Dewangan, M. Rafi, M. Q. Hassan, M. S. Akhtar, A. A. Siddiqui, S. Partap, S. Pasha and M. S. Yar, “Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors,” Bioorg. Chem., vol. 78, pp. 158-169, 2018.

[30] S. A. Galal, S. HM. Khairat, H. I. Ali, S. A. Shouman, Y. M. Attia, M. M. Ali, A. E. Mahmoud, A. H. Abdel-Halim, A. A. Fyiad, A. Tabll, R. El-Shenawy, Y. S. El Abd, R. Ramdan and H. I. El Diwani, “Part II: New candidates of pyrazole-benzimidazole conjugates as checkpoint kinase 2 (Chk2) inhibitors,” Eur. J. Med. Chem., vol. 144, pp. 859-873, 2018.

[31] Y. T. Wang, T. Q. Shi, H. L. Zhu and C. H. Liu, “Synthesis, biological evaluation and molecular docking of benzimidazole grafted benz-sulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors,” Bioorg. Med. Chem., vol. 27, pp. 502-515, 2019.

[32] D. Ashok, M. Ram Reddy, N. Nagaraju, R. Dharavath, K. Ramakrishna, S. Gundu, P. Shravani and M. Sarasija, “Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1,2,3-triazole-based pyrazole aldehydes and their benzimidazole derivatives,” Med. Chem. Res., vol. 29, pp. 699-706, 2020.

[33] A. M. Srour, N. S. Ahmed, S. S. Abd El-Karim, M. M. Anwar and S. M. El-Hallouty, “Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors,” Bioorg. Med. Chem., vol. 28, p. 115657, 2020.

Tải xuống

Số lượt xem: 30
Tải xuống: 13

Đã xuất bản

24.12.2021

Cách trích dẫn

[1]
P. C. Em, “Benzimidazole-heterocyclic hybrids as potential anticancer agents: A review on outstanding research”, HIUJS, vol 2, tr 9–20, tháng 12 2021.

Số

Chuyên mục

KHOA HỌC SỨC KHOẺ

Các bài báo được đọc nhiều nhất của cùng tác giả

1 2 > >>